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Abstract: While phylogenetic trees are widely used in bioinformatics, one of 
the major problems is that different dendrograms may be constructed 
depending on several factors. Albeit numerous quantitative measures to 
compare two different phylogenetic trees have been proposed, visual 
comparison is often necessary. Displaying a pair of alternative phylogenetic 
trees together by finding a proper order of taxa in the leaf level was considered 
earlier to give better visual insights of how two dendrograms are similar. This 
approach raised a problem of branch crossing. Here, a couple of efficient 
methods to count the number of branch crossings in the trees for a given taxa 
order are presented. Using the number of branch crossings as a fitness function, 
genetic algorithms are used to find a taxa order such that two alternative 
phylogenetic trees can be shown with semi-minimal number of branch 
crossing. A couple of methods to encode/decode a taxa order to/from a 
chromosome where genetic operators can be applied are also given. 
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1 Introduction 

Hierarchical clustering methods have been often adopted to construct phylogenetic trees 
in biological taxonomy and bioinformatics (Dunn and Everitt, 1982). They produce a 
visual tree representation of the hierarchical clusters called a dendrogram which may 
correspond to a phylogenetic tree revealing possible patterns of evolution in 
bioinformatics and taxonomy. Numerous methods to construct a dendrogram have been 
studied (see Dunn and Everitt, 1982; Duda et al., 2000; for details of methods). 

While phylogenetic trees are widely used in bioinformatics, different or even 
conflicting dendrograms are produced depending on several factors. First, taxa 
representation such as amino acid sequences in proteins, nucleotide sequences in  
nucleic acids, or certain specific gene sequences affects dramatically on the shape of 
dendrogram. For example, genes for myoglobin and alpha haemoglobin may have 
evolved independently within each evolutionary line of animals (Dunn and Everitt, 
1982). Other factors impactious to the phylogenetic tree structure include which  
pairwise proximity measure between taxa is used and how the distance between  
clusters is defined. 

Comparing multiple conflicting dendrograms is of great interest and several 
quantitative measures including the earliest cophenetic correlation coefficient (Sokal and 
Rohlf, 1962) appear in literature (Robinson and Foulds, 1981; Nye et al., 2005). 
However, it is a very hard and subjective problem and thus needs for visual comparison 
of multiple phylogenetic trees were raised (Nye et al., 2005; Amenta and Klingner, 
2002). 

Finding a proper order of leaf nodes (taxa) plays a salient role in visualising trees 
(Bar-Joseph et al., 2001; Dwyer and Schreiber, 2004). Two conflicting dendrograms are 
often visualised side by side in almost aligned leaf node orders where the number of 
crossings between leaf node orders is minimised (Zainon and Calder, 2006; Scornavacca 
et al., 2011) which is an NP-hard problem (Scornavacca et al., 2012). In Cha (2013), 
visualising two dendrograms in a fixed leaf node order as shown in Figure 1 was 
proposed. Branch crossing is inevitable in many applications. Here, two methods to 
count the number of branch crossing are presented. 
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Figure 1 Sample two phylogenetic trees on a fixed taxa order 

 

The problem of finding an appropriate order of taxa where the number of branch 
crossings in both dendrograms is minimised is considered. Genetic algorithms, which 
provides good solutions to many optimisation problems (Goldberg, 1989; Mitchell, 1996) 
are useful to the branch crossing minimisation problem. A couple of methods to 
encode/decode taxa order to/from a chromosome are presented so that genetic operators 
such as mutation and crossover can be applied. 

The rest of the paper is organised as follows. The preliminary Section 2 defines basic 
terminologies and notations and describes how the dendrogram is represented and 
visualised. In Section 3, algorithms to count the number of branch crossings and drawing 
dendrograms with branch crossing are presented. Section 4 presents genetic algorithms 
using the number of branch crossing as a performance measure to find the order of taxa 
with semi minimum number of branch crossing. Three experimental case studies are 
given in Section 5. Finally, Section 6 concludes this work with future works. 

2 Phylogenetic tree representation 

Before embarking on the branch crossing minimisation algorithms, it is necessary to 
understand how the phylogenetic tree is represented and visualised. This preliminary 
section provides a brief description of the constructing and visualising phylogenetic tree 
algorithms and defines terminologies and notations used in this article. 

Consider a set of five taxa S = {A, B, C, D, E} and let n be the number of taxa,  
n = |S| = 5. These taxa could be different species of interest, which are also referred to as 
operational taxonomic units or simply OTUs in numerical taxonomy. These taxa can be 
represented by nucleotide sequence, protein sequence, or characteristic feature vector, 
etc. When an appropriate pairwise distance measure is used depending on taxa 
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representation, a distance matrix, D among taxa is computed. Different or sometimes 
controversial phylogenetic trees are produced based on choices of taxa representation 
and/or pairwise distance measure. 

Consider a sample distance matrix of all five taxa is given in Table 1. A distance 
matrix, D is typically an input to the bottom-up hierarchical clustering algorithms which 
are widely used in building phylogenetic trees. 
Table 1 A sample distance matrix of five taxa, D 

 A B C D E 
A 0 8.0 20.0 16.0 9.8 
B 8.0 0 21.5 17.9 9.8 
C 20.0 21.5 0 4.0 11.7 
D 16.0 17.9 4.0 0 8.1 
E 9.8 9.8 11.7 8.1 0 

Although there are several bottom-up hierarchical clustering algorithms (see Dunn and 
Everitt, 1982; Duda et al., 2000) for a variety of methods and their descriptions), a 
sample output tree representation, T, useful for the later algorithms to count the number 
of branch crossings, is given in Table 2 which uses the agglomerative single linkage 
clustering method. 
Table 2 A sample dendrogram representation, T 

Cluster N Cl Cr x y 
{A} 1 - - 1 0 
{B} 2 - - 2 0 
{C} 3 - - 3 0 
{D} 4 - - 4 0 
{E} 5 - - 5 0 
{C, D} 6 3 4 3.5 4.0 
{A, B} 7 1 2 1.5 8.0 
{C, D, E} 8 6 5 4.25 8.1 
{A, B, C, D, E} 9 7 8 2.88 9.8 

The height of Table 2 or dendrogram, T in Table 2 is 2n – 1. The first n = 5 rows 
correspond to the leaf level nodes where each row is a taxon. All leaf nodes must be in 
the same bottom level. The remaining n – 1 = 4 rows are internal nodes representing 
clusters of two or more taxa. An internal node may be considered as a possible common 
ancestor of all its descendants. Each node, Nx is often treated as a cluster and is assigned 
to a countable integer value. Each internal node has exactly two child denoted as Cl and 
Cr. Let sib(Nx) denote a sibling node of Nx, e.g., sib(4) = 3. Let Nx.Cl and Nx.Cr denote 
two child nodes of Nx, e.g., 8.Cl = 6. All nodes except for the root node have exactly one 
parent node. Let par(Nx) denote the parent node of Nx, e.g., par(6) = 8. 

Each node has x and y cartesian coordinate position values where x and y are 
horizontal and vertical axis values, respectively as shown in Figure 2(a). Either 
phenogram or cladogram can be drawn by connecting parent and their children nodes as 
shown in Figure 3(b) and Figure 3(c), respectively. 
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Figure 2 Geometry of a dendrogram, (a) cluster node in Cartesian coordinate system  
(b) phenogram (c) cladogram (see online version for colours) 
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The phenogram of T denoted as phe(T) is a set of line segments where parent and child 
nodes are connected with a right angle segments and often called u-shaped line 
dendrogram. phe(T) is defined in equation (4) where NI is an internal node in T and has 
three line segments: one beam and two column line segments as defined in equations (1), 
(2) and (3), respectively. 

( ) ( ) ( )( ). . , . , . . , .I I l I I r Ibeam N N C x N y N C x N y=  (1) 

( ) ( ) ( )( ). . . , . . , . . , .I l I l I l I l Icol N C N C x N C y N C x N y=  (2) 

( ) ( ) ( )( ). . . , . . , . . , .I r I r I r I r Icol N C N C x N C y N C x N y=  (3) 

( ) ( ) ( ){ }( ) , , , ,
I

I I l I r
N T

phe T beam N col N C col N C
∈

= ∪  (4) 

The cladogram of T denoted as cld(T) is a set of line segments where parent and child 
nodes are connected with a straight line segment called leg. cld(T), often called v-shaped 
line dendrogram, is defined in equation (7) where NI is an internal node in T and has two 
line segments (legs) as defined in equations (5) and (6). 

( ) ( ) ( )( ). . . , . . , . , .I l I l I l I Ileg N C N C x N C y N x N y=  (5) 

( ) ( ) ( )( ). . . , . . , . , .I r I r I r I Ileg N C N C x N C y N x N y=  (6) 

( ) ( ){ }( ) . , ,
I

I l I r
N T

cld T leg N C leg N C
∈

= ∪  (7) 

The bottom-up hierarchical clustering algorithms in this paper take D and O as inputs 
where O is an order of taxa, e.g., O = (1, 2, 3, 4, 5) in Table 2. A pseudo-code of an 
algorithm to construct T is described in Algorithm 1. 
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Algorithm 1 Conventional centre method 

for each leaf node, Nx = 1 ~ n, 1 
 Nx.x = idx(Nx) 2 
 Nx.y = 0 3 
for each internal node, Nx = n + 1 ~ 2n – 1, 4 
 c1 and c2 = the closest pair in D 5 
 Nx.cl = c1 and Nx.cr = c2 6 
 Nx.y = D(c1, c2) 7 
 Nx.x = (c1.x + c2.x) = 2 8 
 delete c1 and c2 entries from D 9 
 add Nx to D using a distance bw clusters. 10 

First in lines 1 ~ 3, the index of taxa, Nx in O corresponds to Nx.x. Let idx(Nx) be the 
position of Nx in O. The remaining internal nodes are created by merging two other 
nodes. The closest pair of two nodes in D, c1 and c2 are merged to a new parent node, Nx 
and its height, Nx.y is the distance between two children nodes in D in line 7. Nx.x is 
obtained simply by taking the centre of two children nodes in line 8. Finally, rows and 
columns of c1 and c2 are merged into a single row and column for Nx entries in D. 

In the process of merging two nodes into one, distances between the new node and 
the remaining nodes need to be calculated. Several definitions of distance between 
clusters are in use, i.e., single, complete, group average, centroid, ward, etc. Quite 
significantly different dendrograms are produced depending on the choice of distance 
between two clusters. 

3 Phylogenetic trees with branch crossing 

This section first considers a problem of visualising Phylogenetic Trees with branch 
crossing avoiding the segment overlapping problem and then provides algorithms to 
count the number of branch crossings in a given taxa order. There are n! possible orders 
of permutation of n taxa and only 2n–1 number of taxa orders do not have branch crossing 
but the branch crossing is inevitable in the rest of taxa orders (Cha, 2013). 

For the example of five taxa, {A, B, C, D, E} branch crossings occur in orders  
(3, 5, 1, 4, 2), (2, 5, 1, 3, 4) and (2, 4, 1, 5, 3) as shown in Figure 3. When algorithm ?? is 
used, dendrograms in Figure 3(b) and Figure 3(c) are displayed poorly due to segment 
overlaps as well as branch crossings. This may be a reason that visualising dual trees by 
minimising crossings between two different taxa orders have been used widely such as in 
Amenta and Klingner (2002), Bar-Joseph et al. (2001), Dwyer and Schreiber (2004), 
Zainon and Calder (2006) and Scornavacca et al. (2011) rather than visualising them in a 
single fixed taxa order. 

The problem overlapping segments in a dendrogram can be resolved in two different 
paradigms. An internal node, NI.x can be placed on the beam(NI) which is between NI.Cl.x 
and NI.Cr.x instead of the centre as in the line 8 in Algorithm 1. The first paradigm is to 
place NI.x such that the number of branch crossing is minimised as shown in Figure 4(a) 
and Figure 4(b) which correspond to ones in Figure 3(b) and Figure 3(c), respectively. 
This concept called min-crossing method was introduced in Cha (2013) as an ongoing 
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research. The second paradigm is to place NI.x as close to the centre of beam(NI) as 
possible while avoiding the segment overlaps slightly by as shown in Figure 4(c) and 
Figure 4(d). This second approach called α-centric may introduce more branch crossings, 
i.e., 2 vs. 3 in taxa order (2, 5, 1, 3, 4) and 4 vs. 5 in taxa order (2, 4, 1, 5, 3) using two 
methods as depicted in Figure 4. 

Figure 3 Poor dendrograms due to branch crossing and segment overlaps, (a) (3, 5, 1, 4, 2)  
(b) (2, 5, 1, 3, 4) (c) (2, 4, 1, 5, 3) (see online version for colours) 
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(a)   (b)   (c) 

Figure 4 Min-crossing and α-centric methods to resolve segment overlaps, (a) (2, 5, 1, 3, 4) 
using (b) (2, 4, 1, 5, 3) using the min-crossing method the min-crossing method  
(c) (2, 5, 1, 3, 4) using (d) (2, 4, 1, 5, 3) using the α-centric method the α-centric 
method (see online version for colours) 

� �� � �  � �� � �  
(a)  (b) 

� �� � �  � �� � �  
(c)  (d) 

Although the min-crossing approach draws a dendrogram with the minimum number of 
branch crossing without any segment overlapping, the computational complexity of the 
naïve algorithm illustrated in Figure 5 is high. A naïve algorithm to compute the 
minimum number of branch crossings starts with merging the closest pair of clusters and 
counting how many other clusters are between these two clusters. If there are m clusters 
between them, the merged new cluster can be placed in any one of m – 1 places. For an 
example in Figure 5, the closest clusters are {C} and {D} and there are two other clusters 
{E} and {D} between them. There are two branch crossings between {C} and {D}. When 
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this process is repeated recursively, the leaf node in the traversal tree contains only two 
clusters with the sums of all crossings. Examining all possible new orders, all possible 
topologies of the dendrogram can be generated. The number of branch crossing for each 
topology is the cumulated sum of number of clusters between the closest clusters in the 
respective path from the root. The dendrogram topology with the minimum number of 
branch crossings can be selected. 

Figure 5 Sketchy illustration of min-crossing method on (3, 5, 1, 4, 2) (see online version  
for colours) 
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The α-centric method can be computed very efficiently. The order of clusters is based on 
x coordinate value. Instead of examining all possible position in the new order, the 
merged cluster NI is inserted at (NI.Cl.x + NI.Cr.x) / 2 position. If another node Nz has the 
same value, value is added or subtracted depending on the orientation of sib(Nz). The  
α-centric method is illustrated in Figure 6 with three examples. The resulting T for the 
taxa order (C, A, D, E, B) is given in Table 3. 

Table 3 An illustration of α-centric method 

Cluster N Cl Cr x y 

{A} 1 - - 2 0 
{B} 2 - - 5 0 
{C} 3 - - 1 0 
{D} 4 - - 3 0 
{E} 5 - - 4 0 
{C, D} 6 3 4 1.9 4.0 
{A, B} 7 1 2 3.5 8.0 
{C, D, E} 8 6 5 2.95 8.1 
{A, B, C, D, E} 9 7 8 3.23 9.8 
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Figure 6 Displaying two dendrograms: T2 on top and T3 below (see online version for colours) 
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4 Genetic algorithm for crossing minimisation 

Genetic algorithms which are based on natural processes of evolution and the  
survival-of-the-fittest concept often provide good solutions to many optimisation 
problems (Goldberg, 1989; Mitchell, 1996). In order to utilise genetic algorithms to find 
taxa order such that the number of branch crossing is minimised, taxa order must be 
encoded so that genetic operators, such as mutation and crossover, can be applied. In this 
section, a couple of methods to encode the taxa order to the artificial chromosome are 
presented and compared. 

Table 4 encoding/decoding process with an example of (B, D, E, A, C) ⇔ (2, 3, 3, 1, 1) 

Taxa order O Base order B Chromosome C 

B (A, ,B  C, D, E) 2 

D (A, C, ,D  E) 3 

E (A, C, ,E ) 3 

A ( ,A  C) 1 

C ( )C  1 

 

 



   

 

   

   
 

   

   

 

   

    Minimising branch crossings in phylogenetic trees 31    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

The first chromosome is a vector of length n where each element in position p can have 
integer values between 1 and n – p + 1. Table 4 illustrates how a taxa order O = (B, D, E, 
A, C) can be encoded to or decoded from the chromosome C = (2, 3, 3, 1, 1) on the 
example of five taxa. First the base order, B contains all taxa are sorted in alphabetic 
order. Starting from the first taxon, t1 in O, the position of t1 in P is assigned to represent 
the taxa. Eliminating t1 from both O and B, the process is repeated until only one element 
remains. 

Figure 7 Mutation and crossover operation on chromosomes, (a) a sample order (b) a sample 
order (c) a new order mutated from Figure 7(a) (d) a new order mutated from  
Figure 7(b) (e) crossover with Figure 7(a) and Figure 7(b) (f) crossover with Figure 7(a) 
and Figure 7(b) 

B A CD E

�������������  

C AD BE

�������������  

B A DC E

�������������  
(a) (b) (c) 

�������������

B AE C D

 

B AD C E

�������������  

A BD CE

�������������  
(d) (e) (f) 

Two popular genetic operations are depicted in Figure 7. The mutation is to change the 
value of a randomly chosen position on C to another integer value within its allowed 
range. For example, when the second position value 3 in C = (2, 3, 3, 1, 1) in Figure 7(a) 
is changed 2, the new taxa order O = (B, C, E, A, D) is obtained shown in Figure 7(c). 
When the first position value 5 in C = (5, 4, 2, 2, 1) in Figure 7(b) is changed 2, the new 
taxa order O = (B, E, C, D, A) is obtained shown in Figure 7(d). The crossover operation 
takes two parent chromosomes and produces two children chromosomes. Consider two 
parent chromosomes C1 = (2, 3, 3, 1, 1) and C2 = (5, 4, 2, 2, 1) in Figure 7(a) and  
Figure 7(b). When a randomly selected position p = 2, the first child chromosome takes 
the part of C1 from 1 to p and the remaining part p + 1 to n from C2 as given in  
Figure 7(e). The second child takes the other parts as shown in Figure 7(f). 

The lower number of branch crossing, the higher chance it will survive in genetic 
algorithms. After long generations later, the population of new generation of 
chromosomes likely has taxa orders with low number of branch crossings in both 
dendrograms. 
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The Search space of the aforementioned chromosome representation is n! and when n 
is large, it might take very long time before a reasonable taxa order is found. An 
alternative chromosome representation has its search space 2n–1. While not allowing 
branch crossing in one dendrogram, it searches the taxa order whose branch crossing on 
the other dendrogram is minimised. A dendrogram of n taxa can be drawn in 2n–1 ways 
without crossing (Cha, 2013). 

The alternative chromosome representation has a binary vector I of size n – 1. Each 
position in I corresponds to internal nodes from highest to lowest as depicted in Figure 8. 

Figure 8 Internal node chromosome (see online version for colours) 
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When the binary value of a certain entry in I is 1, the left and right children nodes are 
switched. On the example of five taxa, Figure 9 shows all taxa orders generated by the 
internal node chromosome. Standard mutation and crossover operators on binary vectors 
can be applied. 

Figure 9 Complete search space of internal node chromosome when n = 5 

A B C D E A B D C E B A C D E B A D C E

A B C DE A B D CE B A C DE B A D CE

A BC D E A BD C E B AC D E B AD C E

A BC DE A BD CE B AC DE B AD CE

0  0  0  0 0  0  0  1 0  0  1  0 0  0  1  1

0  1  0  0 0  1  0  1 0  1  1  0 0  1  1  1

1  0  0  0 1  0  0  1 1  0  1  0 1  0  1  1

1  1  0  0 1  1  0  1 1  1  1  0 1  1  1  1
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5 Case studies 

This section considers three case studies where researchers are interested in comparing 
multiple phylogenetic trees on the same set of taxa. Using the method presented in 
previous two sections, two dendrograms are shown together on the the samel taxa order 
with presumably minimal number of branch crossings. 

5.1 Hoplites producta 

In (15), the relationships among 11 various forms of the bee Hoplites producta based on 
23 characteristic comparisons were studied. The names and respective abbreviations of 
Hoplites are Hoplites gracilis (HG), Subgracilis (SG), Interior (IN), Bernadina (BN), 
Panamintana (PN), Producta (PR), Colei (CO), Elongata (EL), Uvularis (UV), Grinelli 
(GR), and Septentrionails (ST). 

Figure 10 Euclidean vs. correlation coefficient proximities, (a) phylogenetic trees Teud and Tcorr in 
(15) (b) phylogenetic trees in rearranged taxa order 

HG

SG

IN

BN

PR

UV

PN

EL

CO

GR

ST

HG

SG

IN

BN

PN

PR

CO

EL

UV

GR

ST

 
(a) 

Colei

Elongata

Hoplites gracilis

Subgracilis

Interior

Bernadina

Producta

Uvularis

Panamintana

Grinelli

Septentrionails  
(b) 



   

 

   

   
 

   

   

 

   

   34 S-H. Cha and Y.J. An    
 

    
 
 

   

   
 

   

   

 

   

       
 

Two different dendrograms, Teud and Tcorr using Euclidean and correlation coefficient 
proximity measures among taxa were produced as shown in Figure 10 on the left and 
right sides, respectively. Original dendrograms that appear in Dunn and Everitt (1982) 
and Michener (1970) are shown side by side in Figure 10(a) with two different taxa 
orders. While setting no branch crossing on the left dendrogram, the optimal taxa order 
that minimises the number of branch crossings on the right side dendrogram is found and 
both dendrograms are constructed on a fixed taxa order as shown in Figure 10(b). Despite 
a couple of branch crossings, the proposed method visualising a pair of dendrograms 
provides better visual insights to compare dendrograms. 

Figure 11 16 S ribosomal RNA vs. cytochrome c sequence, (a) phylogenetic trees in (16)  
(b) phylogenetic trees in rearranged leaf nodes 

Rsp

Rca

Rvi

Rva

Rpa

Rru

Rte

Rge

Rsp

Rca

Rvi

Rva

Rru

Rpa

Rte

Rge

Chr

 
(a) 

Rhodopseudomonas 
viridis

Rhodomicrobium 
vannielii

Rhodopseudomonas 
palustris

Rhodopseudomonas 
sphaeroides

Rhodopseudomonas 
capsulata

Rhodospirillum 
rubrum

Chromatium

Rhodospirillum 
tenue

Rhodopseudomonas 
gelatinosa

 
(b) 



   

 

   

   
 

   

   

 

   

    Minimising branch crossings in phylogenetic trees 35    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5.2 Purple photosynthetic bacter 

In Woese et al. (1980), the relationships among various purple photosynthetic bacteria as 
determined by 16 S ribosomal RNA sequence comparisons and cytochrome c sequence 
comparisons were studied on following taxa: Rhodopseudomonas sphaeroides (Rsp), 
Rhodopseudomonas capsulata (Rca), Rhodopseudomonas viridis (Rvi), Rhodomicrobium 
vannielii (Rva), Rhodopseudomonas palustris (Rpa), Rhodospirillum rubrum (Rru), 
Rhodospirillum tenue (Rte), and Rhodopseudomonas gelatinosa (Rge). While a 16 S 
ribosomal RNA sequence of Chromatium (Chr) is is available, no cytochrome c sequence 
of it is available in Dunn and Everitt (1982) and Woese et al. (1980). 

While two original respective dendrograms were constructed in different taxa orders 
(Woese et al., 1980) as shown in Figure 11(a), it was concluded that the two dendrograms 
are remarkably similar, suggesting that gene transfer should not be held responsible for 
the conflict between the classifications based on sequence data and those obtained by 
traditional means (Dunn and Everitt, 1982). Yet, it is hard to see the similarities when the 
taxa orders are different. 

Using only the subset of taxa that appear in both dendrograms, it did not take long to 
find a taxa order with no branch crossing. Only problem here is the remaining taxa which 
only appear on one of the dendrograms. Since there was only one taxon, Chromatium that 
appears on only one of the dendrograms, a taxa order such that this non-intersecting 
taxon can be placed in the beginning or end of the taxa order was luckily found as shown 
in Figure 11(b). In general, however, treating non-intersecting taxa is one of the future 
works. 

5.3 Forkhead box protein P2 

In Cha (2013), Forkhead box protein P2 or simply FoxP2 gene DNA sequences which 
appear in the following 11 species were considered. These species include bos taurus 
(Bt), canis familiaris (Cf), equus caballus (Ec), gorilla (Go), macaca mulatta (Ma), 
monodelphis (Mo), mus musculus (Mu), pan paniscus bonobo (Pp), pan troglodytes 
chimp (Pt), pongo pygmaeus bornean orangutan (Po), and rattus norvegicus (Rn). 

Although numerous distinct alternative phylogenetic trees can be produced, three 
distinct dendrograms T1, T2 and T3 were examined in Cha (2013). The Jukes-Cantor 
method to calculate pairwise distances is used for T2 and T3 whereas the alignment-score 
is used for T1. The score to treat indels in nucleotides is used for T2 and T3 whereas the 
pairwise-delete is used for T1. The single linkage, unweighted pair group method with 
arithmetic mean, and complete linkage clustering methods are used for T1, T2, and T3, 
respectively. T1, T2, and T3 are all distinct alternative dendrograms. 

The original dendrograms for T1 and T3 are shown in Figure 12(a) with two different 
taxa orders. While having no branch crossing on T1, the genetic algorithm found a taxa 
order such that the number of branch crossing is only 2 on T3 as shown in Figure 12(b). 

T1 and T2 were already given previously in Figure 1 on the top and bottom, 
respectively with no branch crossing on both sides. The same taxa order founded in T1 
and T3 is also used in T1 and T2. In Figure 12(c), T2 and T3 are shown with only two 
branch crossings. 
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Figure 12 Phylogenetic trees on FoxP2 gene DNA sequences of 11 species, (a) phylogenetic 
trees T1 and T3 in (12) (b) phylogenetic trees in rearranged taxa order: T1 vs. T3  
(c) phylogenetic trees in rearranged taxa order: T2 vs. T3 
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6 Conclusions 

This article suggests visualising two alternative phylogenetic trees together on a fixed 
taxa order. To do so requires solving the branch crossing minimisation problem. A naïve 
algorithm to find the minimum number of branch crossings was introduced and an 
efficient algorithm to count the number of branch crossing in an α-centric dendrogram. 
More efficient algorithms or further studies are needed to solve the branch crossing 
minimisation problem. 

The phenogram was emphasised in this article and the branch crossing minimisation 
in cladogram is another future work. Other future work includes visualising a pair of 
dendrograms of two different taxa sets as in Figure 11. 
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